Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Environ Sci Pollut Res Int ; 28(33): 45344-45352, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1188153

ABSTRACT

To control the spread of COVID-19, China has imposed national lockdown policies to restrict the movement of its population since the Chinese New Year of January 2020. In this study, we quantitatively analyzed the changes of pollution sources in Shanghai during the COVID-19 lockdown; a high-resolution emission inventory of typical pollution sources including stationary source, mobile source, and oil and gas storage and transportation source was established based on pollution source data from January to February 2020. The results show that the total emissions of sulfur dioxide (SO2), nitrogen oxides (NOx), particulate matter (PM), and volatile organic compounds (VOCs) were 9520.2, 37,978.6, 2796.7, and 7236.9 tons, respectively, during the study period. Affected by the COVID-19 lockdown, the mobile source experienced the largest decline. The car mileage and oil sales decreased by about 80% during the COVID-19 lockdown (P3) when compared with those during the pre-Spring Festival (P1). The number of aircraft activity decreased by approximately 50%. The impact of the COVID-19 epidemic on industries such as iron and steel and petrochemicals was less significant, while the greater impact was on coatings, chemicals, rubber, and plastic. The emissions of SO2, NOx, PM2.5, and VOCs decreased by 11%, 39%, 37%, and 47%, respectively, during P3 when compared with those during P1. The results show that the measures to control the spread of the COVID-19 epidemic made a significant contribution to emission reductions. This study may provide a reference for other countries to assess the impact of the COVID-19 epidemic on emissions and help establish regulatory actions to improve air quality.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollution/analysis , China , Communicable Disease Control , Environmental Monitoring , Humans , Particulate Matter/analysis , SARS-CoV-2
2.
J Environ Sci (China) ; 106: 26-38, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1046321

ABSTRACT

To investigate the air quality change during the COVID-19 pandemic, we analyzed spatiotemporal variations of six criteria pollutants in nine typical urban agglomerations in China using ground-based data and examined meteorological influences through correlation analysis and backward trajectory analysis under different responses. Concentrations of PM2.5, PM10, NO2, SO2 and CO in urban agglomerations respectively decreased by 18%-45% (30%-62%), 17%-53% (22%-39%), 47%-64% (14%-41%), 9%-34% (0%-53%) and 16%-52% (23%-56%) during Lockdown (Post-lockdown) period relative to Pre-lockdown period. PM2.5 pollution events occurred during Lockdown in Beijing-Tianjin-Hebe (BTH) and Middle and South Liaoning (MSL), and daily O3 concentration rose to grade Ⅱ standard in Post-lockdown period. Distinct from the nationwide slump of NO2 during Lockdown period, a rebound (∼40%) in Post-lockdown period was observed in Cheng-Yu (CY), Yangtze River Middle-Reach (YRMR), Yangtze River Delta (YRD) and Pearl River Delta (PRD). With slightly higher wind speed compared with 2019, the reduction of PM2.5 (51%-62%) in Post-lockdown period is more than 2019 (15%-46%) in HC (Harbin-Changchun), MSL, BTH, CP (Central Plain) and SP (Shandong-Peninsula), suggesting lockdown measures are effective to PM2.5 alleviation. Although O3 concentrations generally increased during the lockdown, its increment rate declined compared with 2019 under similar sunlight duration and temperature. Additionally, unlike HC, MSL and BTH, which suffered from additional (> 30%) air masses from surrounding areas after the lockdown, the polluted air masses reaching YRD and PRD mostly originated from the long-distance transport, highlighting the importance of joint regional governance.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollution/analysis , Beijing , China , Cities , Communicable Disease Control , Environmental Monitoring , Humans , Pandemics , Particulate Matter/analysis , SARS-CoV-2
3.
Environ Pollut ; 272: 115927, 2021 Mar 01.
Article in English | MEDLINE | ID: covidwho-893762

ABSTRACT

With the implementation of COVID-19 restrictions and consequent improvement in air quality due to the nationwide lockdown, ozone (O3) pollution was generally amplified in China. However, the O3 levels throughout the Guangxi region of South China showed a clear downward trend during the lockdown. To better understand this unusual phenomenon, we investigated the characteristics of conventional pollutants, the influence of meteorological and anthropogenic factors quantified by a multiple linear regression (MLR) model, and the impact of local sources and long-range transport based on a continuous emission monitoring system (CEMS) and the HYSPLIT model. Results show that in Guangxi, the conventional pollutants generally declined during the COVID-19 lockdown period (January 24 to February 9, 2020) compared with their concentrations during 2016-2019, while O3 gradually increased during the resumption (10 February to April 2020) and full operation periods (May and June 2020). Focusing on Beihai, a typical Guangxi region city, the correlations between the daily O3 concentrations and six meteorological parameters (wind speed, visibility, temperature, humidity, precipitation, and atmospheric pressure) and their corresponding regression coefficients indicate that meteorological conditions were generally conducive to O3 pollution mitigation during the lockdown. A 7.84 µg/m3 drop in O3 concentration was driven by meteorology, with other decreases (4.11 µg/m3) explained by reduced anthropogenic emissions of O3 precursors. Taken together, the lower NO2/SO2 ratios (1.25-2.33) and consistencies between real-time monitored primary emissions and ambient concentrations suggest that, with the closure of small-scale industries, residual industrial emissions have become dominant contributors to local primary pollutants. Backward trajectory cluster analyses show that the slump of O3 concentrations in Southern Guangxi could be partly attributed to clean air mass transfer (24-58%) from the South China Sea. Overall, the synergistic effects of the COVID-19 lockdown and meteorological factors intensified O3 reduction in the Guangxi region of South China.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Ozone , Air Pollutants/analysis , Air Pollution/analysis , China , Cities , Communicable Disease Control , Environmental Monitoring , Humans , Meteorology , Ozone/analysis , SARS-CoV-2
4.
Environ Pollut ; 267: 115612, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-753608

ABSTRACT

To investigate chemical characteristics, abatement mechanisms and regional transport of atmospheric pollutants during the COVID-19 outbreak control period in the Yangtze River Delta (YRD) region, China, the measurements of air pollutants including fine particulate matter (PM2.5) and volatile organic compounds (VOCs) on non-control period (NCP, 24 December 2019-23 January 2020) and control period (CP, 24 January-23 February 2020) were analyzed at the urban Pudong Supersite (PD) and the regional Dianshan Lake Supersite (DSL). Due to the stricter outbreak control, the levels of PM2.5 and VOCs, and the occurrence frequencies of haze-fog episodes decreased substantially from NCP to CP, with average reduction rates of 31.6%, 38.9% and 35.1% at PD, and 34.5%, 50.7% and 37.9% at DSL, respectively. The major source for PM2.5 was secondary sulfate & nitrate in both periods, and the emission control of primary sources such as coal burning and vehicle exhaust decreased the levels of precursors gas sulfur dioxide and nitrogen oxide, which highly contributed to the abatement of PM2.5 from NCP to CP. The higher levels of ozone at both PD and DSL on CP might be due to the weak nitrogen monoxide titration, low relative humidity and high visibility compared with NCP. Vehicle exhaust and fugitive emission from petrochemical industry were the major contributors of ambient VOCs and their decreasing activities mainly accounted for VOCs abatement. Moreover, the high frequency of haze-fog events was closely impacted by medium-scale regional transport within Anhui and Jiangsu provinces. Therefore, the decreasing regional transported air pollutants coincided with the emission control of local sources to cause the abatement of haze-fog events in YRD region on CP. This study could improve the understanding of the change of atmospheric pollutants during the outbreak control period, and provide scientific base for haze-fog pollution control in YRD region, China.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Environmental Pollutants , China , Disease Outbreaks , Environmental Monitoring , Humans , Pandemics , Particulate Matter , Seasons
5.
Sci Total Environ ; 731: 139211, 2020 Aug 20.
Article in English | MEDLINE | ID: covidwho-197370

ABSTRACT

At the end of 2019, a novel coronavirus, designated as SARS-CoV-2, emerged in Wuhan, China and was identified as the causal pathogen of COVID-19. The epidemic scale of COVID-19 has increased dramatically, with confirmed cases increasing across China and globally. Understanding the potential affecting factors involved in COVID-19 transmission will be of great significance in containing the spread of the epidemic. Environmental and meteorological factors might impact the occurrence of COVID-19, as these have been linked to various diseases, including severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), whose causative pathogens belong to the same virus family as SARS-CoV-2. We collected daily data of COVID-19 confirmed cases, air quality and meteorological variables of 33 locations in China for the outbreak period of 29 January 2020 to 15 February 2020. The association between air quality index (AQI) and confirmed cases was estimated through a Poisson regression model, and the effects of temperature and humidity on the AQI-confirmed cases association were analyzed. The results show that the effect of AQI on confirmed cases associated with an increase in each unit of AQI was statistically significant in several cities. The lag effect of AQI on the confirmed cases was statistically significant on lag day 1 (relative risk (RR) = 1.0009, 95% confidence interval (CI): 1.0004, 1.0013), day 2 (RR = 1.0007, 95% CI: 1.0003, 1.0012) and day 3 (RR = 1.0008, 95% CI: 1.0003, 1.0012). The AQI effect on the confirmed cases might be stronger in the temperature range of 10 °C ≤ T < 20 °C than in other temperature ranges, while the RR of COVID-19 transmission associated with AQI was higher in the relative humidity (RH) range of 10% ≤ RH < 20%. Results may suggest an enhanced impact of AQI on the COVID-19 spread under low RH.


Subject(s)
Betacoronavirus , Coronavirus Infections , Pandemics , Pneumonia, Viral , COVID-19 , China , Cities , Humans , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL